
CS 115 Lecture 20
Recursion

Taken from notes by Dr. Neil Moore



Recursion

Problems – computational, mathematical, and otherwise – can be defined 
and solved recursively.

• That means, in terms of themselves

• A compound sentence is two sentences with “and” between them

• A Python expression may be two expressions with an operator between 
them (3 + 2) * (4 – 9)

• A tree is made of branches and branches are made of smaller branches

• Many mathematical structures are defined recursively
• Fibonacci numbers, fractals, factorials, …
• Mathematicians call this induction (same thing as recursion)
• It’s also a common method of mathematical proof



Recursion in programming

• The idea behind recursion in programming
• Break down a complex problem into a simpler version of the same problem

• Implemented by functions that call themselves
• Recursive functions

• The same computation recurs (happens repeatedly)
• This is not the same as iteration (looping) – the repetition is not obvious in the code

• But it is always possible to convert iteration to recursion and vice versa

• Recursion is often the most natural way of thinking about a problem.
• Some computations are very difficult to perform without recursion



Thinking recursively

• Suppose we want to write a function that prints a triangle of stars

print_triangle(4)

Gives  *

* *

* * *

* * * *

• You can use nested loops to solve this, but let’s try recursion instead



Thinking recursively

• Pretend someone else has already written a function to print a 
triangle of size 3.  How would you print a triangle of size 4?
• First call that function

• Then print a row of four stars

• What about a triangle of size 5?
• Print a triangle of size 4

• Then print a row of five stars

• Recursion: use the solution to a simpler version of the same problem!



A (broken) recursive function

def print_triangle( side_len ):

# first solve a simpler version of the problem

print_triangle(side_len -1)

# solve the original problem by drawing the last line

print(“* “ * side_len)

print()

• One small problem 
• It will never end!

• To print a triangle of size 1, first print a triangle of size 0

• To do that, you would have to print a triangle of size -1 – What???



The base case

• Every recursion must end somewhere
• At some point the problem is so simple we can solve it directly
• Usually that is when the problem size is zero or one
• We call this the base case or the termination condition
• How do you print a triangle of size zero?

• By doing nothing!

def print_triangle(side_len):
if side_len > 0:     # recursive case

print_triangle(side_len -1)
print(“* “ * side_len))
print()

# the “else” is the base case – do nothing!!  Fall through the if and return



Rules for recursion

There are three key requirements for a recursive function to work correctly

1. Base case: There MUST be a special case to handle the simplest versions of the 
problem directly, without recursion.
• A base case does NOT call the function again!

2. Recursive case: there must be a case where the function DOES call itself.

3. Simplification: the recursive call must be performed on a simpler version of the 
problem.  That is, it must reduce the size of the problem, bringing you closer to the 
base case
• That means the arguments MUST be changed from the parameters
• If this rule is not followed, you have infinite recursion and WILL crash eventually!

• A few related guidelines
• You should check for the base case first

• Before making any recursive calls

• The base case is usually, though not always, a problem involving 0 or 1 or something of that size.



About the rules

• You can have multiple base cases, as long as there is at least one.

• Sometimes the base case does nothing!  That’s ok!
• You could put the recursive case in an if statement

• “If it’s not the base case, then do something”

• If the function returns something, that something should use/involve 
the value of the recursive call

• The changes you make to the recursive parameters (when they 
become arguments) can be just about anything:
• Often subtraction, division, shortening a list
• But in some situations, it can be addition or multiplication
• The important thing is that it gets closer to a base case!



About the rules

• The order of recursive calls matters!
• What would happen if we move the print_triangle call so it is after the 
print?

• The triangle is upside down!

• You can have more than one recursive call inside a recursive function.  
• Just means the function will do a LOT more work before it can return



Infinite recursion

What happens if you break one of the rules?

• You can get an infinite recursion

• Meaning the function just keeps calling itself “forever”

• Even worse than an infinite loop!
• Every recursive call (like every call!) uses a little bit of memory

• Parameters, return address, return value, local variables, …

• Where are all these stored?  On the call stack!

• So eventually an infinite recursion will run out of memory
• At least crashing your program

• And possibly the whole operating system!



Infinite recursion and Python

Python has built-in checks to avoid crashing the OS with recursion

• When there are too many recursive calls, it raises an exception:

RuntimeError (“Maximum recursion depth exceeded…”)

• So the program crashes before the OS does

• You can change the limit with sys.setrecursionlimit(1000)
• But then you risk crashing more than just your program!



Recursive definitions

When solving a problem recursively, it helps to write out the definition 
of the problem recursively.  This is usually the hard part.

Consider the Fibonacci sequence:

Fib(0) = 1, Fib(1) = 1, Fib(2) = 2, Fib(3) = 3, Fib(4) = 5, Fib(5) = 8, …

What’s the pattern?

• Recursive case: Fib(n) = Fib(n-1) + Fib(n-2)

• Base case: actually, there are two!  Fib(0) = 1, Fib(1) = 1

• Each recursive call brings us closer to the base cases
• As long as n isn’t negative, anyway



The Fibonacci sequence in code

def fibonacci(n):

# base cases

if n == 0 or n == 1:

result = 1

else: # recursive case

result = fibonacci(n-1) + fibonacci(n-2)

return result



Recursion and the call stack

• Every recursive call adds a new entry to the call stack (just like every 
function call!)
• When the call returns, the entry on the stack is removed (just like every 

return!)

• So you’ll have the same function on the call stack many times
• Each instance of the function has its own parameters, local variables, return 

value and return address

• Variables are local to one call to the function

• Let’s observe the call stack in a recursive program using the debugger


